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Abstract
Two new networks are introduced that resemble small-world properties. These
networks are recursively constructed but retain a fixed, regular degree. They
possess a unique one-dimensional lattice backbone overlaid by a hierarchical
sequence of long-distance links, mixing real-space and small-world features.
Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors,
as revealed by renormalization group studies. The 3-regular network is planar,
has a diameter growing as

√
N with system size N, and leads to super-diffusion

with an exact, anomalous exponent dw = 1.306 . . . , but possesses only a trivial
fixed point Tc = 0 for the Ising ferromagnet. In turn, the 4-regular network is

non-planar, has a diameter growing as ∼2
√

log2 N2
, exhibits ‘ballistic’ diffusion

(dw = 1), and a non-trivial ferromagnetic transition, Tc > 0. It suggests that
the 3-regular network is still quite ‘geometric’, while the 4-regular network
qualifies as a true small world with mean-field properties. As an engineering
application we discuss synchronization of processors on these networks.

PACS numbers: 89.75.−k, 64.60.ae, 64.60.aq, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

The description of the ‘6-degrees-of-separation’ phenomenon in terms of small-world (SW)
networks by Watts and Strogatz [1] has captured the imagination of many researchers, and
was particularly timely as we suddenly found ourselves in a networked world [2–4]. Such a
rich environment requires a diverse set of tools and models for their understanding. Statistical
physics, with its notion of universality, provides powerful methods for the classification of
complex systems, like the renormalization group (RG) [5–8].

Here, we introduce and study a set of graphs which reproduce the behavior of SW networks
without the usual disorder inherent in natural networks. Instead, they attain these properties
in a recursive, hierarchical manner that is conducive for RG. The motivation is comparable
to regular scale-free networks proposed in [9, 10] or the Migdal–Kadanoff RG [11–13]. The
benefit of these features is two-fold: for one, we expect that many SW phenomena can be
studied analytically on these networks, and that they will prove as useful as, say, Migdal–
Kadanoff RG has been for physical systems in low dimensions. Furthermore, possessing such
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Figure 1. Display of the 3-regular network HN3 (left) and 4-regular network HN4 (right). HN3 is
planar but HN4 is not.

well-understood and regular networks is a tremendous advantage for engineering applications,
as it is difficult to manufacture realizations of random networks reliably when we can ascertain
their behavior only in the ensemble average. Here, we introduce these networks by discussing
their geometry and physical processes on them, such as diffusion, phase transitions and
synchronization.

Each network possesses a geometric backbone, a one-dimensional line of N = 2k sites,
either open or closed into a ring. To obtain a SW hierarchy, we parameterize

n = 2i (2j + 1) (1)

uniquely for any integer n �= 0, where j = 0,±1,±2, . . . labels consecutive sites within each
level i � 0 of the hierarchy. For instance, i = 0 refers to all odd integers, i = 1 to all integers
once divisible by 2 (i.e., ±2,±6,±10, . . .), and so on. In these networks, both depicted in
figure 1, in addition to its nearest neighbor in the backbone, each site is also connected with one
(or both) of its neighbors within the hierarchy. For example, we obtain a hierarchical 3-regular
network HN3 by connecting first neighbors in the 1D backbone, then 1–3, 5–7, 9–11, etc,
for i = 0, next 2–6, 10–14, etc, for i = 1, and 4–12, 20–28, etc, for i = 2, and so on. The
4-regular network HN4 is obtained in the same manner, but connecting to both neighbors in
the hierarchy. For HN4 it is clearly preferable to extend the line to −∞ < n < ∞ and also
connect − 1 to 1, − 2 to 2, etc, as well as all negative integers in the above pattern. These
networks resemble models of ultra-diffusion [14, 15], but with inhibiting barriers replaced by
short-cuts here.

It is simple to determine geometric properties. For instance, both networks have a
clustering coefficient [2] of 1/4. Next, we consider the diameter d, the longest of the
shortest paths between any two sites, here the end-to-end distance. Using system sizes
Nk = 2k, k = 2, 4, 6, . . . , for HN3, the diameter path looks like a Koch curve, see figure 2.
The length dk of each marked path is given by dk+2 = 2dk + 1 for Nk+2 = 4Nk, hence

d ∼
√

N. (2)

This property is reminiscent of a square lattice of N sites, whose diameter (=diagonal) is also
∼√

N . HN3 is thus far from true SW behavior where d ∼ ln N .
The geometry of HN4 is more subtle. We consider again the shortest path between the

origin n = 0 and the end n = N = 2k . Due to degeneracies at each level, one has to probe
many levels in the hierarchy to discern a pattern. In fact, any pattern evolves for an increasing
number of levels before it gets taken over by a new one, with two patterns creating degeneracies
at the crossover. We find that the paths here do not search out the longest possible jump, as in
figure 2. Instead, the paths reach quickly to some intermediate level and follow consecutive
jumps at that level before trailing off in the end. This is a key distinguishing feature between
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Figure 2. Sequence of shortest end-to-end paths (=diameter, thick lines) for HN3 of size
N = 2k, k = 2, 4, 8. Whenever the system size N increases by a factor of 4, the diameter d
increases by a factor of ∼2, leading to equation (2).

HN3 and HN4: once a level is reached in HN4, the entire network can be traversed at that
level, while in HN3 one must switch to lower levels to progress, see figure 1.

We derive a recursion equation [16] with the solution

d ∼ 1
2

√
log2 N2 2

√
log2 N2

(N → ∞) (3)

for the diameter of HN4. Expecting the diameter of a small world to scale as d ∼ log N , we
rewrite equation (3):

dk ∼ (log2 N)α with α ∼
√

log2 N2

log2 log2 N
+

1

2
. (4)

Technically, α diverges with N and the diameter grows faster than any power of log2 N (but
less than any power of N, unlike equation (2)). In reality, though, α varies only very slowly
with N, ranging merely from α ≈ 1.44 to ≈1.84 over nine orders of magnitude, N = 10–1010.

As a demonstration of the rich dynamics facilitated by these networks, we have modeled
diffusion on HN3 and HN4. Starting a random walk at n = 0, we focus here only on the mean
displacement with time,

〈|n|〉 ∼ t1/dw . (5)

All walks are controlled by the probability p of a walker to step off the lattice into the direction
of a long-range jump. In particular, the walker always jumps either to the left or right neighbor
with probability (1 − p)/2, but makes a long-range jump with probability p on HN3, or p/2
to either the left or right on HN4. In both cases, a simple 1D nearest-neighbor walk results
for p = 0 with dw = 2 for ordinary diffusion. For any probability p > 0, long-range links
will dominate the asymptotic behavior, and the leading scaling behavior becomes independent
of p.

Adapting the RG for random walks in [17, 18], we find exact results for HN3. The local
analysis[19] of the physical fixed point is singular, with a boundary layer instead of a Taylor
expansion, yielding an anomalous exponent of dw = 2−log2(φ) = 1.3057581 . . . , containing
the (irrational) ‘golden section’ φ = (1 +

√
5)/2. This is a remarkable exponent also because

it is a rare example of a simple walk with super-diffusive (1 < dw < 2) behavior without
Levy flights [20–22], and it would be consistent with experiments leading to super-diffusion
[23]. We have not been able to extend this RG calculation to obtain analytic results for HN4
yet, although the high degree of symmetry inherent in these networks (and the simple result
obtained) suggests the possibility. For HN4, an annealed approximation and simulations,
evolving some 2 × 107 walks for 106 time steps each, suggest a value of dw = 1, see
figure 3. Hence, a walk on HN4 proceeds effectively ballistic, but hardly with linear motion:
widely fluctuating jumps conspire just so that a single walker extends outward with an on-
average constant velocity in both directions, yet the walk remains recurrent. Clearly, it is
easier to traverse HN4 than HN3 because of the above-stated fact that on HN4 a walker can
progress repeatedly within a hierarchical level.
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Figure 3. Rescaled plot of the mean distance 〈|n|〉 in HN4 for walks up to t = 106. We
demonstrate that dw = 1 but with log corrections by rewriting equation (5) as 〈|n|〉/t ∼ V [ln t]β .
Then we obtain ln(〈|n|〉/t)/ ln[ln t] ∼ β + ln V/ ln[ln t] and linearly extrapolate (dashed lines)
1/ ln[ln t] → 0, estimating β ≈ −0.18 at the intercept, independent of p. An effective ‘velocity’
V could be extracted from the slope. For any value besides dw = 1, these extrapolations would
not converge.

Figure 4. Depiction of (exact) RG step for the Ising model on HN3. Tracing out odd-labeled
variables xn±1 for all n = 2(2j +1), in the left plot leads to the renormalized couplings (L′, K ′

0,K
′
1)

on the right in terms of the old couplings (L, K0,K1). Unlabeled bonds correspond to Ki�2. HN3
does not contain couplings of type (L, L′), but they become relevant during the RG process.
Random walks on HN3 lead to a topologically equivalent, but more involved RG step [19].

We have also studied Ising spin models on HN3 and HN4, with RG and with Monte
Carlo simulations. First, we consider the RG for the Ising model on HN3. In this case,
all steps can be done exactly but the result turns out to be trivial (for uniform bonds) in the
sense that there are no finite-temperature fixed points of the RG flow. Yet, the calculation is
instructive, highlighting the large number of statistical models that can be accessed through
the hierarchical nature of the process, and it is almost identical in outcome to the treatment
below for HN4. That small difference is just enough to provide HN4 with a non-trivial Tc > 0,
which we confirm numerically.

The RG consists of recursively tracing out odd-relabeled spins xn±1, see figure 4. xn±1

are connected to their even-labeled nearest neighbors on the lattice backbone by a coupling
K0. At any level, each xn±1 is also connected to another such spin xn∓1 across an even-labeled
spin xn with n = 2(2j + 1) in equation (1) that is exactly once divisible by 2. Let us call that
coupling K1, all other couplings are Ki>1. During the RG process, a new coupling L (dashed
line in figure 4) between next-nearest even-labeled neighbors emerges. Putting all higher level
terms into R, we can section the Hamiltonian

−βH =
∑

{n=2(2j+1)}
(−βHn) + R(K2,K3, . . .), (6)
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where each sectional Hamiltonian is given by

−βHn =
n+1∑

m=n−2

K0xmxm+1 + K1xn−1xn+1 + L(xn−2xn + xnxn+2) (7)

with (K0,K1, L) as unrenormalized couplings and we neglected an overall energy scale L.
After tracing out the odd-labeled spins in each exp [−βHn], we identify the renormalized
couplings (neglecting I ′):

K ′
0 = L + 1

2 ln cosh(2K0) + 1
4 ln[1 + tanh(K1) tanh2(2K0)],

(8)
L′ = 1

4 ln[1 + tanh(K1) tanh2(2K0)],

and K ′
i = Ki+1 f. a. i � 1. The high-T solution K∗

0 = L∗ = 0 is a trivial fixed point of
equation (8). Excluding that and eliminating L∗ yields 1 = tanh(K1) tanh

(
2K∗

0

)
, which has

only the Tc = 0 solution K∗
0 = ∞ (where also K1 = J1/T → ∞). Note, however, that the

RG recursions (8) have a remarkable property due to the hierarchical structure of the network:
the next-level coupling K1 appears as a free parameter and acts as ‘source term’ that could
be chosen to represent physically interesting situations, e.g. disorder or distance dependence.
For instance, with Ki as an increasing function of distance ri = 2i+1, a non-trivial fixed point
could be created.

In contrast, HN4 provides a non-trivial solution for the Ising model even for uniform
bonds, as expected for a mean-field system. Again, an exact result for HN4 is elusive,
although in light of the inherent symmetries such a solution appears possible. Instead, we
proceed to a Niemeijer–van Leeuwen cumulant expansion [7] and compare with our numerical
simulations. The Hamiltonian indeed has an elegant hierarchical form separating the lattice
backbone and long-range couplings:

−βH =
2k∑

n=1

K0xn−1xn +
k∑

i=1

2k−i∑
j=1

Kix2i−1(2j−1)x2i−1(2j+1). (9)

For the RG, we set −βH = −βH0 − βV + R with

−βH0 =
2k−1∑
j=1

K0x2j−1(x2j−2 + x2j ) +
2k−1∑
j=1

Lx2j−2x2j , −βV =
2k−1∑
j=1

K1x2j−1x2j+1, (10)

adding new couplings L that emerge during RG, as in figure 4. Tracing out odd spins and
relabeling all remaining even spin variables xn → x ′

n/2, the cumulant expansion applied to
equation (10) yields a new Hamiltonian −βH′, formally identical to equation (9), with the
rescaled couplings

K ′
0 = L +

1

2
ln cosh(2K0) +

K1

2
tanh2(2K0),

(11)

K ′
1 = K2 +

K1

4
tanh2(2K0), L′ = K1

4
tanh2(2K0).

and K ′
i = Ki+1 for (i � 2). These are the same relation one would obtain for the 1D Ising

model with nnn couplings, if K1 ≡ L and Ki = 0 for i � 2. In that case, one would
find—correctly—that there are no non-trivial fixed points. The K2 term, which appears as an
arbitrary source again at every RG step, if chosen appropriately, provides the sole ingredient
for a non-trivial outcome. But unlike for HN3, here already uniform (i-independent) Ki

obtain Tc > 0. Holding the source terms fixed, Ki�2 ≡ 1, we find a single nontrivial fixed
point at K∗

0 ≈ 0.2781,K∗
1 ≈ 1.0681, L∗ ≈ 0.0681. An analysis of the RG flow [7] in

equations (11), starting with identical Ki ≡ βJ f. a. i, yields Tc ≈ 2.2545J . Simulations
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Figure 5. Width < w2 > as a function of N. The 1D loop without long-range connections diverges
most strongly, linear in N, while the random one-per-node SW connections keep the width finite.
The width diverges with a weak power of N for HN3, but merely logarithmically for HN4.

on HN4 with uniform bonds for increasing system sizes N = 2k accumulate to Tc =
2.1(1)J .

Finally, we demonstrate the usefulness of having a regular (i.e., non-random) network at
hand with fixed, predictable properties. Synchronization is a fundamental problem in natural
and artificially coupled multicomponent systems [24]. Since the introduction of SW networks
[1], it has been established that such networks can facilitate autonomous synchronization
[25, 26]. In a particular synchronization problem the nodes are assumed to be task processing
units, such as computers or manufacturing devices. Let hi(t) be the total task completed
by node i at time t and the set {hi(t)}Ni=1 constitutes the task-completion (synchronization)
landscape, where N is the number of nodes. In this model the nodes whose tasks are smaller
than those of their neighbors are incremented by an exponentially distributed random amount,
i.e., the node i is incremented, if hi(t) � minj∈Si

{hj (t)}, where Si is the set of nodes
connected to node i; otherwise, it idles. In its simplest form the evolution equation is
hi(t + 1) = hi(t)+ηi(t)

∏
j∈Si

�(hj (t)−hi(t)), with iid random variables of unit mean, ηi(t),
δ correlated in space and time and � as the Heaviside step function.

The average steady-state spread or width of the synchronization landscape (degree
of de-synchronization) can be written as w2 = (1/N)

∑N
i=1(hi − h̄)2 [26]. In low-

dimensional regular lattices the synchronization landscape belongs to the Kardar–Parisi–
Zhang [27] universality class, a rough desynchronized state dominated by large-amplitude
long-wavelength fluctuations, where width diverges with N. In contrast, the width becomes
finite [26] on a SW model in which each node is connected to nearest neighbors and one
random neighbor. In figure 5, we show the width as a function of N for a 1D loop and SW,
as well as HN3 and HN4. The width for HN4 behaves very similar to SW, with at most a
logarithmic divergence in N, while it diverges with power law for HN3, but weaker than for a
1D loop. HN4, thus, provides very similar properties to SW with the benefit of a regular and
reproducible structure that is easy to manufacture, and that is potentially analytically tractable.

In conclusion, we introduced a new set of hierarchical networks with regular, small-world
properties and demonstrated their usefulness for theory and engineering applications with a

6



J. Phys. A: Math. Theor. 41 (2008) 252001 Fast Track Communication

few examples. Aside from the countless number of statistical models that can be explored
with RG on these networks, they also provide a systematic way to interpolate off a purely
geometric lattice into the SW domain, possibly all the way into the mean-field regime (for
HN4). Even though at this point complete solutions on HN4 elude the authors, even the
leading approximation provides significant insight.
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